A framework for harmla alkaloid extraction process development using fuzzy-rough sets feature selection and J48 classification
نویسندگان
چکیده
منابع مشابه
A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملCombining rough and fuzzy sets for feature selection
Feature selection (FS) refers to the problem of selecting those input attributes that are most predictive of a given outcome; a problem encountered in many areas such as machine learning, pattern recognition and signal processing. Unlike other dimensionality reduction methods, feature selectors preserve the original meaning of the features after reduction. This has found application in tasks th...
متن کاملSoft fuzzy rough sets for robust feature evaluation and selection
The fuzzy dependency function proposed in the fuzzy rough set model is widely employed in feature evaluation and attribute reduction. It is shown that this function is not robust to noisy information in this paper. As datasets in real-world applications are usually contaminated by noise, robustness of data analysis models is very important in practice. In this work, we develop a new model of fu...
متن کاملFeature Selection with Rough Sets for Web Page Classification
Web page classification is the problem of assigning predefined categories to web pages. A challenge in web page classification is how to deal with the high dimensionality of the feature space. We present a feature reduction method based on the rough set theory and investigate the effectiveness of the rough set feature selection method on web page classification. Our experiments indicate that ro...
متن کاملFuzzy-Rough Simultaneous Attribute Selection and Feature Extraction Algorithm
Among the huge number of attributes or features present in real-life data sets, only a small fraction of them are effective to represent the data set accurately. Prior to analysis of the data set, selecting or extracting relevant and significant features is an important preprocessing step used for pattern recognition, data mining, and machine learning. In this regard, a novel dimensionality red...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Research
سال: 2017
ISSN: 2249-7277,2277-7970
DOI: 10.19101/ijacr.2017.733022